Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Noncoding RNA Res ; 9(3): 796-810, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38590435

RESUMEN

Background: Individuals with homozygous familial hypercholesterolemia (HoFH) have a severe clinical problem in their first decade of life, which is not usually present in heterozygous FH (HeFH) individuals. For this latter group of patients, FH diagnosis is mostly severely delayed with a significant increase in the risk of angina, myocardial infarction, peripheral artery disease, stroke, and cardiovascular and all-cause mortality. Methods: This study used various bioinformatics tools to analyze microarray data and identify critical miRNAs and their target genes associated with FH and its severity. Differentially expressed serum miRNAs from direct hybridization microarray data in three groups of subjects: healthy, HeFH, and HoFH. The differential expressed miRNAs were determined according to a log of fold-change (LFC) <-0.5 or >0.5 and of p < 0.05. Then, we assessed their target genes in silico. Gene ontology (GO) enrichment was applied by Cytoscape. The protein-protein interaction and co-expression network were analyzed by the STRING and GeneMANIA plugins of Cytoscape, respectively. Results: We identified increased expression of circulating hsa-miR-604, hsa-miR-652-5p, and hsa-miR-4451 as well as reduced expression of hsa-miR-3140-3p, hsa-miR-550a-5p, and hsa-miR-363-3p in both group of FH vs. healthy subjects. Higher levels of hsa-miR-1183, hsa-miR-1185-1-3p, hsa-miR-122-5p, hsa-miR-19a-3p, hsa-miR-345-3p, and hsa-miR-34c-5p were detected in HeFH in respect to HoFH when compared to healthy subjects. Most upregulated miRNAs mainly affected gene related to cardiac myofibrillogenesis, cholesterol synthesis, RNA editing for apolipoprotein B, and associated with LDL-cholesterol levels. In contrast, down-regulated miRNAs mainly affected gene related to plasma biomarker for coronary artery disease, lipids metabolism, cell adhesion and migration, genetic predictors of type 2 diabetes and cholesterol metabolism. The essential genes were primarily enriched in GO regarding biological regulation, intracellular nucleic acid binding, and the KEGG pathway of TGF-ß signaling. Conclusions: The case-control nature of this study precluded the possibility of assessing the predictive role of the identified differentially expressed miRNAs for cardiovascular events. Therefore, the signature of miRNAs reflecting the pathogenesis of both HeFH and HoFH.

2.
Biofactors ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318672

RESUMEN

Obesity is a pressing problem worldwide for which standard therapeutic strategies have limited effectiveness. The use of natural products seems to be a promising approach to alleviate obesity and its associated complications. The tepals of Crocus sativus (Cr) plant, usually wasted in saffron production, are an unexplored source of bioactive compounds. Our aim was to elucidate the mechanisms of Cr tepals extract in obesity by investigating its effects on adipocyte differentiation, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) hypertrophy, and lipid metabolism in an animal model of diet-induced obesity. To this end, mouse 3T3-F442A preadipocytes were treated with Cr tepals extract and the expression of adipocyte differentiation genes was determined. Caloric intake, body mass, triglycerides, systemic insulin sensitivity, histology, insulin signaling, and lipid metabolism in VAT and SAT were analyzed in mice fed a 60% fat diet for 14 weeks and treated orally with Cr tepals extract during the last 5 weeks of the diet. We demonstrated for the first time that Cr tepals extract inhibits adipocyte differentiation in vitro. The animal model confirmed that oral treatment with Cr tepals extract results in weight loss, improved systemic insulin sensitivity, lower triglycerides, and improved lipid peroxidation. The suppressive effect of Cr tepals extract on adipocyte hypertrophy and inflammation was observed only in SAT, which, together with preserved SAT insulin signaling, most likely contributed to improved systemic insulin sensitivity. Our results suggest the functionality of SAT as a possible target for the treatment of obesity and its complications.

3.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38001796

RESUMEN

European countries have recently started experimenting with growing and producing their own teas in small quantities, mainly for the specialty tea sector. To characterize European teas, this study investigated a set of five tea types obtained from different Camellia sinensis varieties/cultivars, representing various oxidation grades (green, white, yellow, oolong, black), all grown and processed in the only tea garden in Europe (in Germany) that focuses on all five types. Hot and cold brews were studied by measuring the total phenolic (TPC) and flavonoid contents (TFC), the antioxidant capacity and UV-Vis spectra, also with the objective of discriminating between the different tea types and the different plant varieties. The dried leaves were analyzed to measure the content of essential and toxic elements and by ATR-FTIR spectroscopy to determine a chemical fingerprint for identifying the tea varieties and types. The average levels of TPC (hot brew = 5.82 ± 2.06; cold brew = 5.4 ± 2.46 mM GAEq), TFC (hot brew = 0.87 ± 0.309; cold brew = 0.87 ± 0.413 mM CAEq), and antioxidant capacity (ORAC assay-hot brew = 20.9 ± 605; cold brew = 21.8 ± 8.0 mM TXEq, ABTS assay-hot brew = 15.2 ± 5.09; cold brew = 15.1 ± 5.8 mM TXEq, FRAP assay-hot brew = 9.2 ± 3.84; cold brew = 10.4 ± 5.23 mM AAEq) observed compared well with those from other parts of the world such as China, Africa, and Taiwan. The hazard quotient <1 and the hazard index of 0.14 indicate that there is no non-carcinogenic risk from consumption of these teas. The obtained information is essential for elucidating the characteristics and the impact of tea processing and tea variety on the health benefits of these tea products coming from a single European tea garden. This multifaceted approach would help tea growers in Europe increase their knowledge on the health attributes of the teas they grow, ultimately leading to optimization of the nutraceutical properties of these teas.

4.
Metabolites ; 13(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37887393

RESUMEN

Our study aimed to investigate the effects of exercise on HDL composition and functional properties in overweight/obese subjects. Eighteen overweight/obese subjects (nine F and nine M, BMI = 30.3 ± 3 kg/m2) attended supervised training for 7 weeks. The protocol included combined resistance and conditioning training four to five times each week. The activity of the antioxidant enzyme paraoxonase-1 (PON1) associated with HDL was evaluated in all subjects before and after the training intervention. Moreover, myeloperoxidase (MPO) levels and oxidative stress markers (ox-LDLs and total antioxidant capacity) were studied in the serums of the subjects. At the end of the intervention, the activity of PON1 was increased (p < 0.0001), and MPO levels and the MPO/PON1 ratio were decreased (p < 0.0001). In addition, a significant improvement in muscle strength and maximal oxygen uptake (VO2max) (p < 0.0001) and a significant reduction in total and visceral adipose tissue mass (p < 0.001) and waist circumference (p < 0.008), without any significant decrease in body weight, were observed. A significant correlation was established between serum MPO/PON ratios, HDL redox activity and ox-LDLs. In conclusion, our results demonstrate that exercise training, without modifications of dietary habits, improved HDL functionality in overweight/obese adults, without any significant reduction in BMI or modifications of glucose and lipid biochemical parameters.

5.
Chem Biol Interact ; 384: 110702, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717644

RESUMEN

Paraoxonase-2 (PON2) is an intracellular protein, that exerts a protective role against cell oxidative stress and apoptosis. Genetic and environmental factors (i.e. dietary factors, cigarette smoke, drugs) are able to modulate cellular PON2 levels. The effect of ultraviolet A radiation (UVA), the oxidizing component of sunlight, on PON2 in human dermal fibroblasts (HuDe) has not been previously explored. Excessive UVA radiation is known to cause direct and indirect skin damage by influencing intracellular signalling pathways through oxidative stress mediated by reactive oxygen species (ROS) that modulate the expression of downstream genes involved in different processes, e.g. skin photoaging and cancer. The aim of this study was, therefore, to investigate the modulation of PON2 in terms of protein expression and enzyme activity in HuDe exposed to UVA (270 kJ/m2). Our results show that PON2 is up-regulated immediately after UVA exposure and that its levels and activity decrease in the post-exposure phase, in a time-dependent manner (2-24 h). The trend in PON2 levels mirror the time-course study of UVA-induced ROS. To confirm this, experiments were also performed in the presence of a SPF30 sunscreen used as shielding agent to revert modulation of PON2 at 0 and 2 h post-UVA exposure where other markers of photo-oxidative stress were also examined (NF-KB, γH2AX, advanced glycation end products). Overall, our results show that the upregulation of PON2 might be related to the increase in intracellular ROS and may play an important role in mitigation of UVA-mediated damage and in the prevention of the consequences of UV exposure, thus representing a new marker of early-response to UVA-induced damage in skin fibroblasts.

6.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298165

RESUMEN

Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.


Asunto(s)
Crocus , Diabetes Mellitus , Humanos , Polifenoles/farmacología , Polifenoles/metabolismo , Crocus/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , alfa-Amilasas Pancreáticas/metabolismo , Células CACO-2 , Simulación del Acoplamiento Molecular , Glucosa/metabolismo , Extractos Vegetales/química
7.
Molecules ; 28(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903354

RESUMEN

Low-density lipoproteins (LDLs) exert a key role in the transport of esterified cholesterol to tissues. Among the atherogenic modifications of LDLs, the oxidative modification has been mainly investigated as a major risk factor for accelerating atherogenesis. Since LDL sphingolipids are also emerging as important regulators of the atherogenic process, increasing attention is devoted to the effects of sphingomyelinase (SMase) on LDL structural and atherogenic properties. The aims of the study were to investigate the effect of SMase treatment on the physical-chemical properties of LDLs. Moreover, we evaluated cell viability, apoptosis, and oxidative and inflammatory status in human umbilical vein endothelial cells (HUVECs) treated with either ox-LDLs or SMase-treated LDLs (SMase-LDLs). Both treatments were associated with the accrual of the intracellular ROS and upregulation of the antioxidant Paraoxonase 2 (PON2), while only SMase-LDLs induced an increase of superoxide dismutase 2 (SOD2), suggesting the activation of a feedback loop to restrain the detrimental effects of ROS. The increased caspase-3 activity and reduced viability observed in cells treated with SMase-LDLs and ox-LDLs suggest a pro-apoptotic effect of these modified lipoproteins on endothelial cells. Moreover, a strong proinflammatory effect of SMase-LDLs compared to ox-LDLs was confirmed by an increased activation of NF-κB and consequent increased expression of its downstream cytokines IL-8 and IL-6 in HUVECs.


Asunto(s)
Aterosclerosis , Esfingomielina Fosfodiesterasa , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lipoproteínas LDL/metabolismo , Antioxidantes/farmacología , Apoptosis , Estrés Oxidativo
8.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38256900

RESUMEN

Pimpinella anisum L., or anise, is a plant that, besides its nutritional value, has been used in traditional medical practices and described in many cultures in the Mediterranean region. A possible reason for anise's therapeutic value is that it contains coumarins, which are known to have many biomedical and antioxidant properties. HPLC analysis in our laboratory of the anise extract shows the presence of the coumarin esculetin. We used a hydrodynamic voltammetry rotating ring-disk electrode (RRDE) method to measure the superoxide scavenging abilities of anise seeds and esculetin, which has marked scavenging activity. A related coumarin, 4-methyl-esculetin, also showed strong antioxidant activity as measured by RRDE. Moreover, this study includes the X-ray crystal structure of esculetin and 4-methyl-esculetin, which reveal the H-bond and the stacking intermolecular interactions of the two coumarins. Coordinates of esculetin crystal structure were used to perform a DFT study to arrive at the mechanism of superoxide scavenging. Besides performing a H(hydroxyl) abstraction in esculetin position 6 by superoxide, the scavenging also includes the presence of a second superoxide radical in a π-π approach. Both rings of esculetin were explored for this attack, but only the pyrone ring was effective. As a result, one product of esculetin scavenging is H2O2 formation, while the second superoxide remains π-π trapped within the pyrone ring to form an esculetin-η-O2 complex. Comparison with other coumarins shows that subtle structural differences in the coumarin framework can imply marked differences in scavenging. For instance, when the catechol moiety of esculetin (position 6,7) is shifted to position 7,8 in 4-methyl-7,8-dihydroxy coumarin, that coumarin shows a superoxide dismutase action, which, beside H2O2 formation, includes the formation and elimination of a molecule of O2. This is in contrast with the products formed through esculetin superoxide scavenging, where a second added superoxide remains trapped, and forms an esculetin-η-O2 complex.

9.
Molecules ; 27(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36235028

RESUMEN

Spices, widely used to improve the sensory characteristics of food, contain several bioactive compounds as well, including polyphenols, carotenoids, and glucosynolates. Acting through multiple pathways, these bioactive molecules affect a wide variety of cellular processes involved in molecular mechanisms important in the onset and progress of human diseases. Capparis spinosa L. is an aromatic plant characteristic of the Mediterranean diet. Previous studies have reported that different parts (aerial parts, roots, and seeds) of C. spinosa exert various pharmacological activities. Flower buds of C. spinosa contain several bioactive compounds, including polyphenols and glucosinolates. Two different subspecies of C. spinosa L., namely, C. spinosa L. subsp. spinosa, and C. spinosa L. subsp. rupestris, have been reported. Few studies have been carried out in C. spinosa L. subsp. rupestris. The aim of our study was to investigate the phytochemical profile of floral buds of the less investigated species C. spinosa subsp. rupestris. Moreover, we investigated the effect of the extract from buds of C. spinosa subsp. rupestris (CSE) on cell proliferation, intracellular ROS levels, and expression of the antioxidant and anti-apoptotic enzyme paraoxonase-2 (PON2) in normal and cancer cells. T24 cells and Caco-2 cells were selected as models of advanced-stage human bladder cancer and human colorectal adenocarcinoma, respectively. The immortalized human urothelial cell line (UROtsa) and human dermal fibroblast (HuDe) were chosen as normal cell models. Through an untargeted metabolomic approach based on ultra-high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS), our results demonstrate that C. spinosa subsp. rupestris flower buds contain polyphenols and glucosinolates able to exert a higher cytotoxic effect and higher intracellular reactive oxygen species (ROS) production in cancer cells compared to normal cells. Moreover, upregulation of the expression of the enzyme PON2 was observed in cancer cells. In conclusion, our data demonstrate that normal and cancer cells are differentially sensitive to CSE, which has different effects on PON2 gene expression as well. The overexpression of PON2 in T24 cells treated with CSE could represent a mechanism by which tumor cells protect themselves from the apoptotic process induced by glucosinolates and polyphenols.


Asunto(s)
Capparis , Neoplasias , Antioxidantes/farmacología , Arildialquilfosfatasa , Células CACO-2 , Capparis/química , Carotenoides , Glucosinolatos/análisis , Glucosinolatos/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Fitoquímicos/farmacología , Extractos Vegetales/química , Polifenoles/análisis , Polifenoles/farmacología , Especies Reactivas de Oxígeno
10.
Antioxidants (Basel) ; 11(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35883764

RESUMEN

Chronic diseases such as cardiovascular disease (CVD), atherosclerosis, chronic liver disease, and neurodegenerative diseases are major causes of mortality. These diseases have gained much attention due to their complications, and therefore novel approaches with fewer side effects are an important research topic. Free radicals and oxidative stress are involved in the molecular mechanisms of several diseases. Antioxidants can scavenge free radicals and mitigate their adverse effects. One of the most important antioxidant enzymes are paraoxonases (PONs). These enzymes perform a wide range of physiological activities ranging from drug metabolism to detoxification of neuroleptics. Paraoxonase-1 (PON1) is produced in the liver and then transferred to the bloodstream. It has been demonstrated that PON1 could have beneficial effects in numerous diseases such as atherosclerosis, CVD, diabetes mellitus, and neurodegenerative diseases by modulating relevant signalling pathways involved in inflammation and oxidative stress. These pathways include peroxisome proliferator-activated receptor gamma (PPAR-γ) and protein kinase B/nuclear factor kappa-light-chain-enhancer of activated B cells (AKT/NF-κB)-dependent signalling pathways. Increasing PON1 could potentially have protective effects and reduce the incidence of various diseases by modulating these signalling pathways. Several studies have reported that dietary factors are able to modulate PON1 expression and activity. This review aimed at summarizing the state of the art on the effects of dietary phytochemicals on PON1 enzyme activity and the relevant signalling pathways in different diseases.

11.
Mar Drugs ; 20(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35877750

RESUMEN

Posidonia oceanica (L.) Delile is an endemic Mediterranean marine plant of extreme ecological importance. Previous in vitro and in vivo studies have demonstrated the potential antidiabetic properties of P. oceanica leaf extract. Intestinal glucose transporters play a key role in glucose homeostasis and represent novel targets for the management of diabetes. In this study, the ability of a hydroalcoholic P. oceanica leaf extract (POE) to modulate intestinal glucose transporters was investigated using Caco-2 cells as a model of an intestinal barrier. The incubation of cells with POE significantly decreased glucose uptake by decreasing the GLUT2 glucose transporter levels. Moreover, POE had a positive effect on the barrier integrity by increasing the Zonulin-1 levels. A protective effect exerted by POE against oxidative stress induced by chronic exposure to high glucose concentrations or tert-butyl hydroperoxide was also demonstrated. This study highlights for the first time the effect of POE on glucose transport, intestinal barrier integrity, and its protective antioxidant effect in Caco-2 cells. These findings suggest that the P. oceanica phytocomplex may have a positive impact by preventing the intestinal cell dysfunction involved in the development of inflammation-related disease associated with oxidative stress.


Asunto(s)
Alismatales , Células CACO-2 , Glucosa , Humanos , Estrés Oxidativo , Extractos Vegetales/farmacología
12.
Exp Mol Pathol ; 126: 104777, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35500666

RESUMEN

Epidemiological studies suggest associations between diabetes mellitus (DM) andbladder cancer. Several potential mechanisms may explain the increased bladdercancer burden in DM patients. Hyperglycaemia is associated with dysregulation of cellintracellular metabolism and alterations of lipoprotein metabolism and oxidative stress. Dysfunctional HDL including glycated and oxidized HDL are described in DM. Weevaluated the effect of normal HDL (N-HDL) and glycated HDL (G-HDL) on cellproliferation and oxidative stress of J82 bladder cancer cells. We also studied the effectof HDL on cholesterol influx and efflux. In addition, the levels of proteins involvedin cholesterol transport (ABCA1, SRB1, ABCG1) by western blot analysis were studied.Our results demonstrate that N-HDL and G-HDL promote cell proliferation and increase intracellular reactive oxygen species (ROS) levels triggered by incubation of tert-butylhydroperoxide. The increase of intracellular ROS in cells preincubated with G-HDL was associated to higher levels of TBARS in cells compared to N-HDL. Cholesterol efflux wasincreased, on the contrary cholesterol influx was significantly decreased in cellsincubated with G-HDL with respect to cells incubated with N-HDL. Levels of SR-B1 and ABCG1 was increased in cells incubated with G-HDL, suggestingthat dysfunctional HDL could affect cholesterol homeostasis in J82 cells. These resultssuggest that HDL-based treatments should be considered for treatment of urinary bladder cancer.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Transportador 1 de Casete de Unión a ATP , Línea Celular , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Homeostasis , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
13.
Front Microbiol ; 13: 832919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479636

RESUMEN

Resistant wound microorganisms are becoming an extremely serious challenge in the process of treating infected chronic wounds, leading to impaired healing. Thus, additional approaches should be taken into consideration to improve the healing process. The use of natural extracts can represent a valid alternative to treat/control the microbial infections in wounds. This study investigates the antimicrobial/antivirulence effects of Capparis spinose aqueous extract against the main chronic wound pathogens: Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The extract shows phenolic characterization with rutin (1.8 ± 0.14 µg/mg) as the major compound and antibacterial effect against bacteria (S. aureus PECHA 10 MIC 6.25%; P. aeruginosa PECHA 4 MIC 12.50%) without action against C. albicans (MIC and MFC ≥ 50%). Capparis spinose also shows a significant antivirulence effect in terms of antimotility/antibiofilm actions. In particular, the extract acts (i) on P. aeruginosa both increasing its swimming and swarming motility favoring the planktonic phenotype and reducing its adhesive capability, (ii) on S. aureus and P. aeruginosa biofilm formation reducing both the biomass and CFU/ml. Furthermore, the extract significantly displays the reduction of a dual-species S. aureus and P. aeruginosa Lubbock chronic wound biofilm, a complex model that mimics the realistic in vivo microbial spatial distribution in wounds. The results suggest that C. spinose aqueous extract could represent an innovative eco-friendly strategy to prevent/control the wound microbial infection.

14.
Life (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36675951

RESUMEN

Atopic dermatitis (AD) is an itchy dermatitis with multifactorial aetiology, chronic-recurrent course, and typical distribution of lesions according to the age, affecting the 10-20% of pediatric population. Patients with AD, including children, suffer from many metabolic comorbidities, including metabolic syndrome, being overweight, obesity, dyslipidaemia, and arterial hypertension, all of which had a prevalence that was demonstrated to be higher than in healthy patients. The association between AD and metabolic comorbidities is multifactorial and involves the deregulation of immune system. In fact, hypertrophic adipose tissue produces soluble adipokines involved in inflammation and immunity, which stimulate the production of pro-inflammatory cytokines, responsible for a chronic low-grade inflammatory state and a higher predisposition to hypersensitivity reactions. Especially in pediatric population with AD, these metabolic disorders are usually underestimated and are associated with long term sequelae and an increased risk of a cardiovascular event, which may also occur later in adult age. Therefore, metabolic comorbidities should be carefully evaluated and early treated in children with AD, to minimize the long-term risk of cardiovascular events.

15.
Lipids Health Dis ; 20(1): 143, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696795

RESUMEN

Breast cancer is one of the main leading causes of women death. In recent years, attention has been focused on the role of lipoproteins, alterations of cholesterol metabolism and oxidative stress in the molecular mechanism of breast cancer. A role for high density lipoproteins (HDL) has been proposed, in fact, in addition to the role of reverse cholesterol transport (RCT), HDL exert antioxidant and anti-inflammatory properties, modulate intracellular cholesterol homeostasis, signal transduction and proliferation. Low levels of HDL-Cholesterol (HDL-C) have been demonstrated in patients affected by breast cancer and it has been suggested that low levels of HDL-C could represent a risk factor of breast cancer. Contrasting results have been observed by other authors. Recent studies have demonstrated alterations of the activity of some enzymes associated to HDL surface such as Paraoxonase (PON1), Lecithin-Cholesterol Acyltransferase (LCAT) and Phospholipase A2 (PLA2). Higher levels of markers of lipid peroxidation in plasma or serum of patients have also been observed and suggest dysfunctional HDL in breast cancer patients. The review summarizes results on levels of markers of oxidative stress of plasma lipids and on alterations of enzymes associated to HDL in patients affected by breast cancer. The effects of normal and dysfunctional HDL on human breast cancer cells and molecular mechanisms potentially involved will be also reviewed.


Asunto(s)
Neoplasias de la Mama/etiología , Lipoproteínas HDL/efectos adversos , Estrés Oxidativo , Animales , Neoplasias de la Mama/sangre , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Lipoproteínas HDL/metabolismo
17.
Antioxidants (Basel) ; 10(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925093

RESUMEN

BACKGROUND: previous studies reported the involvement of reactive oxygen species (ROS) and lipid peroxidation in the pathogenesis of inflammatory skin diseases. The aim of our study was to investigate the relationship between oxidative stress and inflammation in children affected by atopic dermatitis (AD), a chronic relapsing inflammatory skin disease. METHODS: levels of lipid hydroperoxides, total antioxidant capacity, and activities of the enzymes myeloperoxidase (MPO), PON1, and PON2/3 were investigated in 56 atopic pediatric patients, and compared with 48 sex-/age-matched healthy controls. RESULTS: significantly higher levels of lipid hydroperoxides and lower values of total antioxidant potential were observed in the serum of AD children compared to that of the controls. Significant lower PON1 activities, and a significant increase in levels of MPO were observed in serum of patients, with a higher serum MPO level/PON1 paraoxonase activity ratio in patients compared to that in the controls. Significantly lower lactonase activity of PON enzymes was observed in polymorphonuclear cells isolated from AD patients. Statistically negative correlation was established between the activity of intracellular PON2/3 activity and ROS levels. CONCLUSIONS: our data confirmed that AD is associated with higher oxidative damage and a decrease in antioxidant defense. Moreover, alterations of extracellular and intracellular PON activity can promote lipoprotein dysfunction in AD patients.

18.
Curr Med Chem ; 28(14): 2842-2850, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32674726

RESUMEN

Low circulating high-density lipoproteins (HDL) are not only defining criteria for metabolic syndrome, but are more generally associated with atherosclerotic cardiovascular disease (ASCVD) and other chronic diseases. Oxidative stress, a hallmark of cardio-metabolic disease, further influences HDL activity by suppressing their function. Especially the leukocyte- derived enzyme myeloperoxidase (MPO) has recently attracted great interest as it catalyzes the formation of oxidizing reactive species that modify the structure and function of HDL, ultimately increasing cardiovascular risk. Contrariwise, paraoxonase-1 (PON1) is an HDL-associated enzyme that protects HDL from lipid oxidation and then acts as a protective factor against ASCVD. It is noteworthy that recent studies have demonstrated how MPO, PON1 and HDL form a functional complex in which PON1 partially inhibits the MPO activity, while MPO in turn partially inactivates PON1.In line with that, a high MPO/PON1 ratio characterizes patients with ASCVD and metabolic syndrome and has been suggested as a potential marker of dysfunctional HDL as well as a predictor of ASCVD. In this review, we summarize the evidence on the interactions between MPO and PON1 with regard to their structure, function and interaction with HDL activity. We also provide an overview of in vitro and experimental animal models, finally focusing on clinical evidence from a cohort of patients with ASCVD and metabolic syndrome.


Asunto(s)
Arildialquilfosfatasa/fisiología , Aterosclerosis , Lipoproteínas HDL , Peroxidasa/fisiología , Animales , Humanos , Lipoproteínas HDL/metabolismo , Oxidación-Reducción
19.
Eur J Clin Invest ; 51(5): e13452, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33210737

RESUMEN

BACKGROUND: Cutaneous neoplasms include melanoma and non-melanoma skin cancers (NMSCs). Among NMSCs, basal cell carcinoma (BCC) represents the most common lesion. On the contrary, although accounting for less than 5% of all skin cancers, melanoma is responsible for most of cutaneous malignancy-related deaths. Paraoxonase-2 (PON2) is an intracellular enzyme exerting a protective role against production of reactive oxygen species within mitochondrial respiratory chain. Recently, a growing attention has been focused on exploring the role of PON2 in cancer. The aim of this study was to investigate the diagnostic and prognostic role of PON2 in skin neoplasms. MATERIALS AND METHODS: 36 cases of BCC, distinguished between nodular and infiltrative lesions, as well as 29 melanoma samples were analysed by immunohistochemistry to evaluate PON2 protein expression. Subsequent statistical analyses were carried out to explore the existence of correlations between intratumour enzyme levels and clinicopathological features. RESULTS: Results obtained showed PON2 overexpression in BCCs compared with controls. In particular, distinguishing between less and more aggressive tumour forms, we found no significant differences in enzyme levels between nodular BCCs and controls. Conversely, PON2 expression was significantly higher in infiltrative BCCs compared with controls. Moreover, the enzyme was strongly upregulated in melanoma samples with respect to controls. Interestingly, PON2 levels were positively correlated with Breslow thickness, Clark level, regression, mitoses, lymph node metastases, primary tumour (pT) parameter and pathological stage. CONCLUSIONS: Reported findings seem to suggest that PON2 expression levels could be positively related with tumour aggressiveness of both BCC and melanoma.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Carcinoma Basocelular/metabolismo , Melanoma/metabolismo , Neoplasias Cutáneas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Basocelular/patología , Femenino , Humanos , Inmunohistoquímica , Ganglios Linfáticos/patología , Masculino , Melanoma/patología , Persona de Mediana Edad , Índice Mitótico , Invasividad Neoplásica , Neoplasias Cutáneas/patología , Carga Tumoral
20.
Antioxidants (Basel) ; 9(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297311

RESUMEN

Melanoma represents the most aggressive skin cancer, being responsible for the majority of deaths related with these neoplasms. Despite chemotherapy represents a frontline approach for management of the advanced stages of the disease, it displayed poor response rates and short-term efficacy due to melanoma cell resistance. Therefore, the discovery of molecules that can be used for effective targeted therapy of melanoma is crucial. In this study, we evaluated the impact of paraoxonase-2 (PON2) silencing on proliferation, viability, and resistance to treatment of the A375 melanoma cell line with chemotherapeutic drugs dacarbazine (DTIC) and cisplatin (CDDP). Due to the enzymes ability to counteract oxidative stress, we also evaluated the effect of enzyme knockdown on reactive oxygen species (ROS) production in cells treated with CDDP. The data reported clearly demonstrated that PON2 knockdown led to a significant reduction of cell proliferation and viability, as well as to an enhancement of A375 sensitivity to CDDP treatment. Moreover, enzyme downregulation was associated with an increase of ROS production in CDDP-treated cells. Although further analyses will be necessary to understand how PON2 could influence melanoma cell metabolism and phenotype, our results seem to suggest that the enzyme may serve as an interesting molecular target for effective melanoma treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...